Lemma 12.29.5. Let $\mathcal{A}$ and $\mathcal{B}$ be abelian categories. Let $u : \mathcal{A} \to \mathcal{B}$ and $v : \mathcal{B} \to \mathcal{A}$ be additive functors. Assume
$u$ is right adjoint to $v$,
$v$ transforms injective maps into injective maps,
$\mathcal{A}$ has enough injectives,
$vB = 0$ implies $B = 0$ for any $B \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{B})$, and
$\mathcal{A}$ has functorial injective embeddings.
Then $\mathcal{B}$ has functorial injective embeddings.
Comments (2)
Comment #8494 by Laurent Moret-Bailly on
Comment #9104 by Stacks project on
There are also: