Lemma 12.27.2. Let $\mathcal{A}$ be an abelian category. Let $I$ be an object of $\mathcal{A}$. The following are equivalent:
The object $I$ is injective.
The functor $B \mapsto \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(B, I)$ is exact.
Any short exact sequence
\[ 0 \to I \to A \to B \to 0 \]in $\mathcal{A}$ is split.
We have $\mathop{\mathrm{Ext}}\nolimits _\mathcal {A}(B, I) = 0$ for all $B \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$.
Comments (0)
There are also: