Definition 12.27.1. Let $\mathcal{A}$ be an abelian category. An object $J \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$ is called injective if for every injection $A \hookrightarrow B$ and every morphism $A \to J$ there exists a morphism $B \to J$ making the following diagram commute
\[ \xymatrix{ A \ar[r] \ar[d] & B \ar@{-->}[ld] \\ J & } \]
Comments (0)
There are also: