Lemma 10.144.2. Let $R \to R[x]_ g/(f)$ be standard étale.
The ring map $R \to R[x]_ g/(f)$ is étale.
For any ring map $R \to R'$ the base change $R' \to R'[x]_ g/(f)$ of the standard étale ring map $R \to R[x]_ g/(f)$ is standard étale.
Any principal localization of $R[x]_ g/(f)$ is standard étale over $R$.
A composition of standard étale maps is not standard étale in general.
Comments (2)
Comment #4606 by Rex on
Comment #4776 by Johan on