Lemma 10.137.9. A composition of standard smooth ring maps is standard smooth.
Proof. Suppose that $R \to S$ and $S \to S'$ are standard smooth. We choose presentations $S = R[x_1, \ldots , x_ n]/(f_1, \ldots , f_ c)$ and $S' = S[y_1, \ldots , y_ m]/(g_1, \ldots , g_ d)$. Choose elements $g_ j' \in R[x_1, \ldots , x_ n, y_1, \ldots , y_ m]$ mapping to the $g_ j$. In this way we see $S' = R[x_1, \ldots , x_ n, y_1, \ldots , y_ m]/ (f_1, \ldots , f_ c, g'_1, \ldots , g'_ d)$. To show that $S'$ is standard smooth it suffices to verify that the determinant
is invertible in $S'$. This is clear since it is the product of the two determinants which were assumed to be invertible by hypothesis. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)