Example 10.136.8. Consider the ring map
In other words this is the unique ring map of polynomial rings as indicated such that
holds in $\mathbf{Z}[\alpha _ i, x]$. Another way to say this is that $a_ i$ maps to the $i$th elementary symmetric function in $\alpha _1, \ldots , \alpha _ n$. Note that $S$ is generated by $n$ elements over $R$ subject to $n$ equations. Hence to show that $S$ is a relative global complete intersection over $R$ we have to show that the fibre rings $S \otimes _ R \kappa (\mathfrak p)$ have dimension $0$. This follows as in Example 10.136.7 because the ring map $\mathbf{Z}[a_1, \ldots , a_ n] \to \mathbf{Z}[\alpha _1, \ldots , \alpha _ n]$ is actually finite since each $\alpha _ i \in S$ satisfies the monic equation $x^ n - a_1 x^{n - 1} + \ldots + (-1)^ n a_ n$ over $R$.
Comments (0)
There are also: