Lemma 10.135.10. Let $K/k$ be a field extension. Let $S$ be a finite type algebra over $k$. Let $\mathfrak q_ K$ be a prime of $S_ K = K \otimes _ k S$ and let $\mathfrak q$ be the corresponding prime of $S$. Then $S_{\mathfrak q}$ is a complete intersection over $k$ (Definition 10.135.5) if and only if $(S_ K)_{\mathfrak q_ K}$ is a complete intersection over $K$.
Proof. Choose a presentation $S = k[x_1, \ldots , x_ n]/I$. This gives a presentation $S_ K = K[x_1, \ldots , x_ n]/I_ K$ where $I_ K = K \otimes _ k I$. Let $\mathfrak q_ K' \subset K[x_1, \ldots , x_ n]$, resp. $\mathfrak q' \subset k[x_1, \ldots , x_ n]$ be the corresponding prime. We will show that the equivalent conditions of Lemma 10.135.4 hold for the pair $(S = k[x_1, \ldots , x_ n]/I, \mathfrak q)$ if and only if they hold for the pair $(S_ K = K[x_1, \ldots , x_ n]/I_ K, \mathfrak q_ K)$. The lemma will follow from this (see Lemma 10.135.8).
By Lemma 10.116.6 we have $\dim _{\mathfrak q} S = \dim _{\mathfrak q_ K} S_ K$. Hence the integer $c$ occurring in Lemma 10.135.4 is the same for the pair $(S = k[x_1, \ldots , x_ n]/I, \mathfrak q)$ as for the pair $(S_ K = K[x_1, \ldots , x_ n]/I_ K, \mathfrak q_ K)$. On the other hand we have
Therefore, $\dim _{\kappa (\mathfrak q')} I \otimes _{k[x_1, \ldots , x_ n]} \kappa (\mathfrak q') = \dim _{\kappa (\mathfrak q'_ K)} I_ K \otimes _{K[x_1, \ldots , x_ n]} \kappa (\mathfrak q_ K')$. Thus it follows from Nakayama's Lemma 10.20.1 that the minimal number of generators of $I_{\mathfrak q'}$ is the same as the minimal number of generators of $(I_ K)_{\mathfrak q'_ K}$. Thus the lemma follows from characterization (2) of Lemma 10.135.4. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: