Lemma 10.129.1. Let $k$ be a field. Let $S$ be a finite type $k$-algebra. Let $f_1, \ldots , f_ i$ be elements of $S$. Assume that $S$ is Cohen-Macaulay and equidimensional of dimension $d$, and that $\dim V(f_1, \ldots , f_ i) \leq d - i$. Then equality holds and $f_1, \ldots , f_ i$ forms a regular sequence in $S_{\mathfrak q}$ for every prime $\mathfrak q$ of $V(f_1, \ldots , f_ i)$.
Proof. If $S$ is Cohen-Macaulay and equidimensional of dimension $d$, then we have $\dim (S_{\mathfrak m}) = d$ for all maximal ideals $\mathfrak m$ of $S$, see Lemma 10.114.7. By Proposition 10.103.4 we see that for all maximal ideals $\mathfrak m \in V(f_1, \ldots , f_ i)$ the sequence is a regular sequence in $S_{\mathfrak m}$ and the local ring $S_{\mathfrak m}/(f_1, \ldots , f_ i)$ is Cohen-Macaulay of dimension $d - i$. This actually means that $S/(f_1, \ldots , f_ i)$ is Cohen-Macaulay and equidimensional of dimension $d - i$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: