Lemma 10.122.7. A composition of quasi-finite ring maps is quasi-finite.
Proof. Suppose $A \to B$ and $B \to C$ are quasi-finite ring maps. By Lemma 10.6.2 we see that $A \to C$ is of finite type. Let $\mathfrak r \subset C$ be a prime of $C$ lying over $\mathfrak q \subset B$ and $\mathfrak p \subset A$. Since $A \to B$ and $B \to C$ are quasi-finite at $\mathfrak q$ and $\mathfrak r$ respectively, then there exist $b \in B$ and $c \in C$ such that $\mathfrak q$ is the only prime of $D(b)$ which maps to $\mathfrak p$ and similarly $\mathfrak r$ is the only prime of $D(c)$ which maps to $\mathfrak q$. If $c' \in C$ is the image of $b \in B$, then $\mathfrak r$ is the only prime of $D(cc')$ which maps to $\mathfrak p$. Therefore $A \to C$ is quasi-finite at $\mathfrak r$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)