Lemma 10.71.6. Let $R$ be a ring. Let $M$ be an $R$-module. Let $0 \to N' \to N \to N'' \to 0$ be a short exact sequence. Then we get a long exact sequence
\[ \begin{matrix} 0 \to \mathop{\mathrm{Hom}}\nolimits _ R(M, N') \to \mathop{\mathrm{Hom}}\nolimits _ R(M, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(M, N'')
\\ \phantom{0\ } \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M, N') \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M, N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M, N'') \to \ldots
\end{matrix} \]
Proof. Pick a free resolution $F_{\bullet } \to M$. Since each of the $F_ i$ are free we see that we get a short exact sequence of complexes
\[ 0 \to \mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N') \to \mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N'') \to 0 \]
Thus we get the long exact sequence from the snake lemma applied to this. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: