Lemma 10.53.4. Let $R$ be Artinian. The Jacobson radical of $R$ is a nilpotent ideal.
Proof. Let $I \subset R$ be the Jacobson radical. Note that $I \supset I^2 \supset I^3 \supset \ldots $ is a descending sequence. Thus $I^ n = I^{n + 1}$ for some $n$. Set $J = \{ x\in R \mid xI^ n = 0\} $. We have to show $J = R$. If not, choose an ideal $J' \not= J$, $J \subset J'$ minimal (possible by the Artinian property). Then $J' = J + Rx$ for some $x \in R$. By minimality we have $J + IJ' = J$ or $J + IJ' = J'$. In the latter case we get $J' = J + Ix$ and by Lemma 10.20.1 we obtain $J = J'$ a contradiction. Hence $xI^{n + 1} \subset xI \cdot I^ n \subset J \cdot I^ n = 0$. Since $I^{n + 1} = I^ n$ we conclude $x \in J$. Contradiction. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (4)
Comment #3422 by Jonas Ehrhard on
Comment #3484 by Johan on
Comment #8248 by Et on
Comment #8893 by Stacks project on
There are also: