Lemma 10.52.6. Let $R$ be a ring with maximal ideal $\mathfrak m$. Suppose that $M$ is an $R$-module with $\mathfrak m M = 0$. Then the length of $M$ as an $R$-module agrees with the dimension of $M$ as a $R/\mathfrak m$ vector space. The length is finite if and only if $M$ is a finite $R$-module.
Proof. The first part is a special case of Lemma 10.52.5. Thus the length is finite if and only if $M$ has a finite basis as a $R/\mathfrak m$-vector space if and only if $M$ has a finite set of generators as an $R$-module. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: