Lemma 10.50.4. Let $A$ be a valuation ring with maximal ideal $\mathfrak m$ and fraction field $K$. Let $x \in K$. Then either $x \in A$ or $x^{-1} \in A$ or both.
Proof. Assume that $x$ is not in $A$. Let $A'$ denote the subring of $K$ generated by $A$ and $x$. Since $A$ is a valuation ring we see that there is no prime of $A'$ lying over $\mathfrak m$. Since $\mathfrak m$ is maximal we see that $V(\mathfrak m A') = \emptyset $. Then $\mathfrak m A' = A'$ by Lemma 10.17.2. Hence we can write $1 = \sum _{i = 0}^ d t_ i x^ i$ with $t_ i \in \mathfrak m$. This implies that $(1 - t_0) (x^{-1})^ d - \sum t_ i (x^{-1})^{d - i} = 0$. In particular we see that $x^{-1}$ is integral over $A$, and hence $x^{-1} \in A$ by Lemma 10.50.3. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (7)
Comment #42 by Rankeya on
Comment #48 by Johan on
Comment #2365 by Dominic Wynter on
Comment #2428 by Johan on
Comment #7895 by Mingchen on
Comment #8159 by Aise Johan de Jong on
Comment #8162 by Laurent Moret-Bailly on
There are also: