The Stacks project

Lemma 10.50.2. Let $K$ be a field. Let $A \subset K$ be a local subring. Then there exists a valuation ring with fraction field $K$ dominating $A$.

Proof. We consider the collection of local subrings of $K$ as a partially ordered set using the relation of domination. Suppose that $\{ A_ i\} _{i \in I}$ is a totally ordered collection of local subrings of $K$. Then $B = \bigcup A_ i$ is a local subring which dominates all of the $A_ i$. Hence by Zorn's Lemma, it suffices to show that if $A \subset K$ is a local ring whose fraction field is not $K$, then there exists a local ring $B \subset K$, $B \not= A$ dominating $A$.

Pick $t \in K$ which is not in the fraction field of $A$. If $t$ is transcendental over $A$, then $A[t] \subset K$ and hence $A[t]_{(t, \mathfrak m)} \subset K$ is a local ring distinct from $A$ dominating $A$. Suppose $t$ is algebraic over $A$. Then for some nonzero $a \in A$ the element $at$ is integral over $A$. In this case the subring $A' \subset K$ generated by $A$ and $ta$ is finite over $A$. By Lemma 10.36.17 there exists a prime ideal $\mathfrak m' \subset A'$ lying over $\mathfrak m$. Then $A'_{\mathfrak m'}$ dominates $A$. If $A = A'_{\mathfrak m'}$, then $t$ is in the fraction field of $A$ which we assumed not to be the case. Thus $A \not= A'_{\mathfrak m'}$ as desired. $\square$


Comments (4)

Comment #1238 by Jonathan Wise on

This proof does not appear to be complete. In the last paragraph, the element may be in , so and does not contradict the maximality of .

Comment #1251 by on

If then is in the fraction field of which we assumed not to be the case. I have added this explanation to the proof, see here.

Comment #7900 by Laurent Moret-Bailly on

Second paragraph of proof, line 3: "Then for some nonzero ...".

There are also:

  • 3 comment(s) on Section 10.50: Valuation rings

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00IA. Beware of the difference between the letter 'O' and the digit '0'.