The Stacks project

Lemma 10.39.19. Let $R \to S$ be flat. Let $\mathfrak p \subset \mathfrak p'$ be primes of $R$. Let $\mathfrak q' \subset S$ be a prime of $S$ mapping to $\mathfrak p'$. Then there exists a prime $\mathfrak q \subset \mathfrak q'$ mapping to $\mathfrak p$.

Proof. By Lemma 10.39.18 the local ring map $R_{\mathfrak p'} \to S_{\mathfrak q'}$ is flat. By Lemma 10.39.17 this local ring map is faithfully flat. By Lemma 10.39.16 there is a prime mapping to $\mathfrak p R_{\mathfrak p'}$. The inverse image of this prime in $S$ does the job. $\square$


Comments (0)

There are also:

  • 3 comment(s) on Section 10.39: Flat modules and flat ring maps

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00HS. Beware of the difference between the letter 'O' and the digit '0'.