Lemma 10.39.4. A composition of (faithfully) flat ring maps is (faithfully) flat. If $R \to R'$ is (faithfully) flat, and $M'$ is a (faithfully) flat $R'$-module, then $M'$ is a (faithfully) flat $R$-module.
Proof. The first statement of the lemma is a particular case of the second, so it is clearly enough to prove the latter. Let $R \to R'$ be a flat ring map, and $M'$ a flat $R'$-module. We need to prove that $M'$ is a flat $R$-module. Let $N_1 \to N_2 \to N_3$ be an exact complex of $R$-modules. Then, the complex $R' \otimes _ R N_1 \to R' \otimes _ R N_2 \to R' \otimes _ R N_3$ is exact (since $R'$ is flat as an $R$-module), and so the complex $M' \otimes _{R'} \left(R' \otimes _ R N_1\right) \to M' \otimes _{R'} \left(R' \otimes _ R N_2\right) \to M' \otimes _{R'} \left(R' \otimes _ R N_3\right)$ is exact (since $M'$ is a flat $R'$-module). Since $M' \otimes _{R'} \left(R' \otimes _ R N\right) \cong \left(M' \otimes _{R'} R'\right) \otimes _ R N \cong M' \otimes _ R N$ for any $R$-module $N$ functorially (by Lemmas 10.12.7 and 10.12.3), this complex is isomorphic to the complex $M' \otimes _ R N_1 \to M' \otimes _ R N_2 \to M' \otimes _ R N_3$, which is therefore also exact. This shows that $M'$ is a flat $R$-module. Tracing this argument backwards, we can show that if $R \to R'$ is faithfully flat, and if $M'$ is faithfully flat as an $R'$-module, then $M'$ is faithfully flat as an $R$-module. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: