Lemma 10.38.2. Let $\varphi : R \to S$ be a ring map. Let $I \subset R$ be an ideal. Let $A = \sum I^ nt^ n \subset R[t]$ be the subring of the polynomial ring generated by $R \oplus It \subset R[t]$. An element $s \in S$ is integral over $I$ if and only if the element $st \in S[t]$ is integral over $A$.
Proof. Suppose $st$ is integral over $A$. Let $P = x^ d + \sum _{j < d} a_ j x^ j$ be a monic polynomial with coefficients in $A$ such that $P^\varphi (st) = 0$. Let $a_ j' \in A$ be the degree $d-j$ part of $a_ j$, in other words $a_ j' = a_ j'' t^{d-j}$ with $a_ j'' \in I^{d-j}$. For degree reasons we still have $(st)^ d + \sum _{j < d} \varphi (a_ j'') t^{d-j} (st)^ j = 0$. Hence $s^ d + \sum _{j < d} \varphi (a_ j'') s^ j = 0$ and we see that $s$ is integral over $I$.
Suppose that $s$ is integral over $I$. Say $P = x^ d + \sum _{j < d} a_ j x^ j$ with $a_ j \in I^{d-j}$. Then we immediately find a polynomial $Q = x^ d + \sum _{j < d} (a_ j t^{d-j}) x^ j$ with coefficients in $A$ which proves that $st$ is integral over $A$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #8318 by Et on
Comment #8939 by Stacks project on