Lemma 10.17.8. Let $R$ be a ring. The space $\mathop{\mathrm{Spec}}(R)$ is quasi-compact.
The spectrum of a ring is quasi-compact
Proof.
It suffices to prove that any covering of $\mathop{\mathrm{Spec}}(R)$ by standard opens can be refined by a finite covering. Thus suppose that $\mathop{\mathrm{Spec}}(R) = \cup D(f_ i)$ for a set of elements $\{ f_ i\} _{i\in I}$ of $R$. This means that $\cap V(f_ i) = \emptyset $. According to Lemma 10.17.2 this means that $V(\{ f_ i \} ) = \emptyset $. According to the same lemma this means that the ideal generated by the $f_ i$ is the unit ideal of $R$. This means that we can write $1$ as a finite sum: $1 = \sum _{i \in J} r_ i f_ i$ with $J \subset I$ finite. And then it follows that $\mathop{\mathrm{Spec}}(R) = \cup _{i \in J} D(f_ i)$.
$\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #3795 by slogan_bot on
There are also: