Lemma 10.12.15. Let $M$ be an $R$-module. Then the $S^{-1}R$-modules $S^{-1}M$ and $S^{-1}R \otimes _ R M$ are canonically isomorphic, and the canonical isomorphism $f : S^{-1}R \otimes _ R M \to S^{-1}M$ is given by
Proof. Obviously, the map $f' : S^{-1}R \times M \to S^{-1}M$ given by $f'(a/s, m) = am/s$ is bilinear, and thus by the universal property, this map induces a unique $S^{-1}R$-module homomorphism $f : S^{-1}R \otimes _ R M \to S^{-1}M$ as in the statement of the lemma. Actually every element in $S^{-1}M$ is of the form $m/s$, $m\in M, s\in S$ and every element in $S^{-1}R \otimes _ R M$ is of the form $1/s \otimes m$. To see the latter fact, write an element in $S^{-1}R \otimes _ R M$ as
Where $m = \sum _ k {a_ k t_ k}m_ k$. Then it is obvious that $f$ is surjective, and if $f(\frac{1}{s} \otimes m) = m/s = 0$ then there exists $t'\in S$ with $tm = 0$ in $M$. Then we have
Therefore $f$ is injective. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: