The Stacks project

Lemma 10.12.4. Let $M_1, \ldots , M_ r$ be $R$-modules. Then there exists a pair $(T, g)$ consisting of an $R$-module T and an $R$-multilinear mapping $g : M_1\times \ldots \times M_ r \to T$ with the universal property: For any $R$-multilinear mapping $f : M_1\times \ldots \times M_ r \to P$ there exists a unique $R$-module homomorphism $f' : T \to P$ such that $f'\circ g = f$. Such a module $T$ is unique up to unique isomorphism. We denote it $M_1\otimes _ R \ldots \otimes _ R M_ r$ and we denote the universal multilinear map $(m_1, \ldots , m_ r) \mapsto m_1 \otimes \ldots \otimes m_ r$.

Proof. Omitted. $\square$


Comments (1)

Comment #627 by Wei Xu on

A right ) is missing: "".

There are also:

  • 8 comment(s) on Section 10.12: Tensor products

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00CZ. Beware of the difference between the letter 'O' and the digit '0'.