Proposition 10.9.14. Let $I$ be an ideal of $A$, $S$ a multiplicative set of $A$. Then $S^{-1}I$ is an ideal of $S^{-1}A$ and $\overline{S}^{-1}(A/I)$ is isomorphic to $S^{-1}A/S^{-1}I$, where $\overline{S}$ is the image of $S$ in $A/I$.
Proof. The fact that $S^{-1}I$ is an ideal is clear since $I$ itself is an ideal. Define
where $\overline{x}$ and $\overline{s}$ are the images of $x$ and $s$ in $A/I$. We shall keep similar notations in this proof. This map is well-defined by the universal property of $S^{-1}A$, and $S^{-1}I$ is contained in the kernel of it, therefore it induces a map
On the other hand, the map $A \to S^{-1}A/S^{-1}I$ sending $x$ to $\overline{x/1}$ induces a map $A/I \to S^{-1}A/S^{-1}I$ sending $\overline{x}$ to $\overline{x/1}$. The image of $\overline{S}$ is invertible in $S^{-1}A/S^{-1}I$, thus induces a map
by the universal property. It is then clear that $\overline{f}$ and $g$ are inverse to each other, hence are both isomorphisms. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: