Lemma 15.66.20. Let $R' \to R$ be a surjective ring map whose kernel is a nilpotent ideal. Let $K' \in D(R')$ and set $K = K' \otimes _{R'}^\mathbf {L} R$. Let $a, b \in \mathbf{Z}$. Then $K$ has tor amplitude in $[a, b]$ if and only if $K'$ does.
Proof. One direction follows from Lemma 15.66.13. For the other, assume $K$ has tor amplitude in $[a, b]$ and let $M'$ be an $R'$-module. We have to show that $K' \otimes _{R'}^\mathbf {L} M'$ has nonzero cohomology only for degrees contained in the interval $[a, b]$.
Let $I = \mathop{\mathrm{Ker}}(R' \to R)$. Then $I^ n = 0$ for some $n$. If $IM' = 0$, then we can view $M'$ as an $R$-module and argue as follows
which has nonvanishing cohomology only in the interval $[a, b]$ by assumption on $K$. If $I^{t + 1}M' = 0$, then we consider the short exact sequence
By induction on $t$ we have that both $K' \otimes _{R'}^\mathbf {L} IM'$ and $K' \otimes _{R'}^\mathbf {L} M'/IM'$ have nonzero cohomology only for degrees in the interval $[a, b]$. Then the distinguished triangle
proves the same is true for $K' \otimes _{R'}^\mathbf {L} M'$ as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: