Lemma 62.14.2. Let $f : X \to Y$ and $g : Y \to S$ be a morphisms of schemes. Assume $S$ locally Noetherian, $g$ locally of finite type and flat of relative dimension $e \ge 0$, and $f$ locally of finite type and flat of relative dimension $r \geq 0$. Then $[X/X/Y]_ r \circ [Y/Y/S]_ e = [X/X/S]_{r + e}$ in $z(X/S, r + e)$.
Proof. Special case of Lemma 62.13.5. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)