Lemma 62.13.4. Let $f : X \to Y$ and $Y \to S$ be morphisms of schemes, both locally of finite type. Let $r, e \geq 0$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module of finite type, with $\dim (\text{Supp}(\mathcal{F}_ y)) \leq r$ for all $y \in Y$. Let $\mathcal{G}$ be a quasi-coherent $\mathcal{O}_ Y$-module of finite type, with $\dim (\text{Supp}(\mathcal{G}_ s)) \leq e$ for all $s \in S$. If $\alpha = [\mathcal{F}/X/Y]_ r$ and $\beta = [\mathcal{G}/Y/S]_ e$ (Example 62.5.2) and $\mathcal{F}$ is flat over $Y$, then $\alpha \circ \beta = [\mathcal{F} \otimes _{\mathcal{O}_ X} f^*\mathcal{G}/X/S]_{r + e}$.
Proof. First we observe that $\mathcal{F} \otimes _{\mathcal{O}_ X} f^*\mathcal{G}$ is a quasi-coherent $\mathcal{O}_ X$-module of finite type. Let $s \in S$. Observe that
by right exactness of tensor products. Moreover $\mathcal{F}_ s$ is flat over $Y_ s$ as a base change of a flat module. Thus the equality $(\alpha \circ \beta )_ s = [(\mathcal{F} \otimes _{\mathcal{O}_ X} f^*\mathcal{G})_ s]_{r + e}$ follows from Lemma 62.11.4. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)