Definition 62.8.1. Let $f : X \to S$ be a morphism of schemes. Assume $S$ is locally Noetherian and $f$ is locally of finite type. Let $r \geq 0$ be an integer. We say a relative $r$-cycle $\alpha $ on $X/S$ effective if $\alpha _ s$ is an effective cycle (Chow Homology, Definition 42.8.4) for all $s \in S$. The monoid of all effective relative $r$-cycles on $X/S$ is denoted $z^{eff}(X/S, r)$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)