The Stacks project

Lemma 62.6.6. Let $f : X \to S$ be a morphism of schemes. Assume $S$ is locally Noetherian and $f$ locally of finite type. Let $r \geq 0$. Let $\alpha $ and $\beta $ be relative $r$-cycles on $X/S$. The following are equivalent

  1. $\alpha = \beta $, and

  2. $\alpha _\eta = \beta _\eta $ for any generic point $\eta \in S$ of an irreducible component of $S$.

Proof. The implication (1) $\Rightarrow $ (2) is immediate. Assume (2). For every $s \in S$ we can find an $\eta $ as in (2) which specializes to $s$. By Properties, Lemma 28.5.10 we can find a morphism $g : S' \to S$ from the spectrum $S'$ of a discrete valuation ring which maps the generic point $\eta '$ to $\eta $ and maps the closed point $0$ to $s$. Then $\alpha _ s$ and $\beta _ s$ are elements of $Z_ r(X_ s)$ which base change to the same element of $Z_ r(X_{0'})$, namely $sp_{X_{S'}/S'}(\alpha _{\eta '})$ where $\alpha _{\eta '}$ is the base change of $\alpha _\eta $. Since the base change map $Z_ r(X_ s) \to Z_ r(X_{0'})$ is injective as discussed in Section 62.3 we conclude $\alpha _ s = \beta _ s$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0H55. Beware of the difference between the letter 'O' and the digit '0'.