Lemma 62.5.10. Let $g : S' \to S$ be a bijective morphism of schemes which induces isomorphisms of residue fields. Let $f : X \to S$ be locally of finite type. Set $X' = S' \times _ S X$. Let $r \geq 0$. Then base change by $g$ determines a bijection between the group of families of $r$-cycles on fibres of $X/S$ and the group of families of $r$-cycles on fibres of $X'/S'$.
Proof. Omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)