Lemma 29.55.3. Let $A \to B$ be a ring map inducing a dominant morphism $\mathop{\mathrm{Spec}}(B) \to \mathop{\mathrm{Spec}}(A)$ of spectra. There exists an $A$-subalgebra $B' \subset B$ such that
$\mathop{\mathrm{Spec}}(B') \to \mathop{\mathrm{Spec}}(A)$ is a universal homeomorphism inducing isomorphisms on residue fields,
given a factorization $A \to C \to B$ such that $\mathop{\mathrm{Spec}}(C) \to \mathop{\mathrm{Spec}}(A)$ is a universal homeomorphism inducing isomorphisms on residue fields, the image of $C \to B$ is contained in $B'$.
Comments (0)