The Stacks project

Lemma 87.8.1. In the situation above, if $B$ has a countable fundamental system of open ideals, then $A$ has a countable fundamental system of open ideals.

Proof. Choose a fundamental system $B \supset J_1 \supset J_2 \supset \ldots $ of open ideals. By tautness of $\varphi $, for every $n$ we can find an open ideal $I_ n$ such that $J_ n \supset I_ nB$. We claim that $I_ n$ is a fundamental system of open ideals of $A$. Namely, suppose that $I \subset A$ is open. As $\varphi $ is taut, the closure of $IB$ is open and hence contains $J_ n$ for some $n$ large enough. Hence $I_ nB \subset IB$. Let $J$ be the closure of $IB$ in $B$. Since $A/I \to B/J$ is faithfully flat, it is injective. Hence, since $I_ n \to A/I \to B/J$ is zero as $I_ nB \subset IB \subset J$, we conclude that $I_ n \to A/I$ is zero. Hence $I_ n \subset I$ and we win. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GXL. Beware of the difference between the letter 'O' and the digit '0'.