The Stacks project

Lemma 15.127.2. In Situation 15.127.1 let $x \in \Omega $. There exists a canonical short exact sequence

\[ 0 \to B(x) \to M(x) \to V(x) \to 0 \]

of $\kappa (x)$-vector spaces which the following property: for $s_1, \ldots , s_ r \in M$ the following are equivalent

  1. there exists an $f \in R$, $f \not\in x$ such that the map $s_1, \ldots , s_ r : R^{\oplus r} \to M$ becomes the inclusion of a direct summand after inverting $f$, and

  2. $s_1(x), \ldots , s_ r(x)$ map to linearly independent elements of $V(x)$.

Proof. Define $B(x) \subset M(x)$ as the perpendicular of the image of the map

\[ \mathop{\mathrm{Hom}}\nolimits _ R(M, R) \to \mathop{\mathrm{Hom}}\nolimits _{\kappa (x)}(M(x), \kappa (x)) \]

and set $V(x) = M(x)/B(x)$. Then any $R$-linear map $\varphi : M \to R$ induces a map $\overline{\varphi } : V(x) \to \kappa (x)$ and conversely any $\kappa (x)$-linear map $\lambda : V(x) \to \kappa (x)$ is equal to $\overline{\varphi }$ for some $\varphi $. Let $s_1, \ldots , s_ r \in M$.

Suppose $s_1, \ldots , s_ r$ map to linearly independent elements of $V(x)$. Then we can find $\varphi _1, \ldots , \varphi _ r \in \mathop{\mathrm{Hom}}\nolimits _ R(M, R)$ such that $\varphi _ i(s_ j)$ maps to $\delta _{ij}$1 in $\kappa (x)$. Hence the matrix of the composition

\[ R^{\oplus r} \xrightarrow {s_1, \ldots , s_ r} M \xrightarrow {\varphi _1, \ldots , \varphi _ r} R^{\oplus r} \]

has a determinant $f \in R$ which maps to $1$ in $\kappa (x)$ Clearly, this implies that $s_1, \ldots , s_ r : R^{\oplus r} \to M$ is the inclusion of a direct summand after inverting $f$.

Conversely, suppose that we have an $f \in R$, $f \not\in x$ such that $s_1, \ldots , s_ r : R^{\oplus r} \to M$ is the inclusion of a direct summand after inverting $f$. Hence we can find $R_ f$-linear maps $\varphi _ i : M_ f \to R_ f$ such that $\varphi _ i(s_ j) = \delta _{ij} \in R_ f$. Since $\mathop{\mathrm{Hom}}\nolimits _ R(M, R)_ f = \mathop{\mathrm{Hom}}\nolimits _{R_ f}(M_ f, R_ f)$ by Algebra, Lemma 10.10.2 we conclude that we can find $n \geq 0$ and $\varphi '_ i \in \mathop{\mathrm{Hom}}\nolimits _ R(M, R)$ such that $\varphi '_ i(s_ j) = f^ n\delta _{ij} \in R$. It follows that $s_1, \ldots , s_ r$ map to linearly independent elements of $V(x)$ as $\overline{\varphi }'_ i(s_ j) = f^ n\delta _{ij}$. $\square$

[1] Kronecker delta.

Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GV9. Beware of the difference between the letter 'O' and the digit '0'.