Proof.
Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_ X$-module. Let $\mathcal{L}$ be an $f$-ample invertible module. Choose an affine scheme $V$ and a surjective étale morphism $V \to Y$. Set $U = V \times _ Y X$. Then $\mathcal{L}|_ U$ is ample on $U$. By Properties, Proposition 28.26.13 we know there exists finitely many maps $s_ i : \mathcal{L}^{\otimes n_ i}|_ U \to \mathcal{F}|_ U$ which are jointly surjective. Consider the quasi-coherent $\mathcal{O}_ Y$-modules
\[ \mathcal{H}_ n = f_*(\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n}) \]
We may think of $s_ i$ as a section over $V$ of the sheaf $\mathcal{H}_{-n_ i}$. Suppose we can find finite locally free $\mathcal{O}_ Y$-modules $\mathcal{E}_ i$ and maps $\mathcal{E}_ i \to \mathcal{H}_{-n_ i}$ such that $s_ i$ is in the image. Then the corresponding maps
\[ f^*\mathcal{E}_ i \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n_ i} \longrightarrow \mathcal{F} \]
are going to be jointly surjective and the lemma is proved. By Limits of Spaces, Lemma 70.9.2 for each $i$ we can find a finite type quasi-coherent submodule $\mathcal{H}'_ i \subset \mathcal{H}_{-n_ i}$ which contains the section $s_ i$ over $V$. Thus the resolution property of $Y$ produces surjections $\mathcal{E}_ i \to \mathcal{H}'_ i$ and we conclude.
$\square$
Comments (0)