The Stacks project

Lemma 7.17.10. Let $\mathcal{C}$ be a site. Let $\beta $ be an ordinal. Let $\beta \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$, $\alpha \mapsto \mathcal{F}_\alpha $ be a system of sheaves over $\beta $. For $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ consider the canonical map

\[ \mathop{\mathrm{colim}}\nolimits _{\alpha < \beta } \mathcal{F}_\alpha (U) \longrightarrow \left(\mathop{\mathrm{colim}}\nolimits _{\alpha < \beta } \mathcal{F}_\alpha \right)(U) \]

If the cofinality of $\beta $ is large enough, then this map is bijective for all $U$.

Proof. The left hand side is the value on $U$ of the colimit $\mathcal{F}_{\mathop{\mathrm{colim}}\nolimits }$ taken in the category of presheaves, see Section 7.4. Recall that $\mathop{\mathrm{colim}}\nolimits _{\alpha < \beta } \mathcal{F}_\alpha $ is the sheafification $\mathcal{F}_{\mathop{\mathrm{colim}}\nolimits }^\# $ of $\mathcal{F}_{\mathop{\mathrm{colim}}\nolimits }$, see Lemma 7.10.13. Let $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$ be an element of the set $\text{Cov}(\mathcal{C})$ of coverings of $\mathcal{C}$. If the cofinality of $\beta $ is larger than the cardinality of $I$, then we claim

\[ H^0(\mathcal{U}, \mathcal{F}_{\mathop{\mathrm{colim}}\nolimits }) = \mathop{\mathrm{colim}}\nolimits H^0(\mathcal{U}, \mathcal{F}_\alpha ) = \mathop{\mathrm{colim}}\nolimits \mathcal{F}_\alpha (U) = \mathcal{F}_{\mathop{\mathrm{colim}}\nolimits }(U) \]

The second and third equality signs are clear. For the first, say $s = (s_ i) \in H^0(\mathcal{U}, \mathcal{F}_{\mathop{\mathrm{colim}}\nolimits })$. Then for each $i$ the element $s_ i$ comes from an element $s_{i, \alpha _ i} \in \mathcal{F}_{\alpha _ i}(U_ i)$ for some $\alpha _ i < \beta $. By the assumption on cofinality, we can choose $\alpha _ i = \alpha $ independent of $i$. Then $s_ i$ and $s_ j$ map to the same element of $\mathcal{F}_{\alpha _{i, j}}(U_ i \times _ U U_ j)$ for some $\alpha _{i, j} < \beta $. Since the cardinality if $I \times I$ is also less than the cofinality of $\beta $, we see that we may after increasing $\alpha $ assume $\alpha _{i, j} = \alpha $ for all $i, j$. This proves that the natural map $\mathop{\mathrm{colim}}\nolimits H^0(\mathcal{U}, \mathcal{F}_\alpha ) \to H^0(\mathcal{U}, \mathcal{F}_{\mathop{\mathrm{colim}}\nolimits })$ is surjective. A very similar argument shows that it is injective. In particular, we see that $\mathcal{F}_{\mathop{\mathrm{colim}}\nolimits }$ satisfies the sheaf condition for $\mathcal{U}$. Thus if the cofinality of $\beta $ is larger than the supremum of the cardinalities of the set of index sets $I$ of coverings, then we conclude. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GS0. Beware of the difference between the letter 'O' and the digit '0'.