Lemma 103.15.2. With assumptions and notation as in Lemma 103.15.1. Let $\mathcal{H}$ be an abelian sheaf on $\mathcal{X}_{lisse,{\acute{e}tale}}$ (resp. $\mathcal{X}_{flat,fppf}$). Then
103.15.2.1
\begin{equation} \label{stacks-cohomology-equation-higher-direct-image-lisse-etale} R^ pf'_*\mathcal{H} = \text{sheaf associated to }y \longmapsto H^ p((V \times _{y, \mathcal{Y}} \mathcal{X})', (\text{pr}')^{-1}\mathcal{H}) \end{equation}
Here $y$ is an object of $\mathcal{Y}_{lisse,{\acute{e}tale}}$ (resp. $\mathcal{Y}_{flat,fppf}$) lying over the scheme $V$ and the notation $(V \times _{y, \mathcal{Y}} \mathcal{X})'$ and $\text{pr}'$ are explained in the proof.
Proof.
As in the proof of Lemma 103.15.1 let $(V \times _{y, \mathcal{Y}} \mathcal{X})' \subset V \times _{y, \mathcal{Y}} \mathcal{X}$ be the full subcategory consisting of objects $(x, \varphi )$ where $x$ is an object of $\mathcal{X}_{lisse,{\acute{e}tale}}$ (resp. $\mathcal{X}_{flat,fppf}$) and $\varphi : f(x) \to y$ is a morphism in $\mathcal{Y}$. By Equation (103.15.1.1) we have
\[ f'_*\mathcal{H}(y) = \Gamma ((V \times _{y, \mathcal{Y}} \mathcal{X})', \ (\text{pr}')^{-1}\mathcal{H}) \]
where $\text{pr}'$ is the projection. For an object $(x, \varphi )$ of $(V \times _{y, \mathcal{Y}} \mathcal{X})'$ we can think of $\varphi $ as a section of $(f')^{-1}h_ y$ over $x$. Thus $(V \times _\mathcal {Y} \mathcal{X})'$ is the localization of the site $\mathcal{X}_{lisse,{\acute{e}tale}}$ (resp. $\mathcal{X}_{flat,fppf}$) at the sheaf of sets $(f')^{-1}h_ y$, see Sites, Lemma 7.30.3. The morphism
\[ \text{pr}' : (V \times _{y, \mathcal{Y}} \mathcal{X})' \to \mathcal{X}_{lisse,{\acute{e}tale}} \ (\text{resp. } \text{pr}' : (V \times _{y, \mathcal{Y}} \mathcal{X})' \to \mathcal{X}_{flat,fppf}) \]
is the localization morphism. In particular, the pullback $(\text{pr}')^{-1}$ preserves injective abelian sheaves, see Cohomology on Sites, Lemma 21.13.3.
Choose an injective resolution $\mathcal{H} \to \mathcal{I}^\bullet $ on $\mathcal{X}_{lisse,{\acute{e}tale}}$ (resp. $\mathcal{X}_{flat,fppf}$). By the formula for pushforward we see that $R^ if'_*\mathcal{H}$ is the sheaf associated to the presheaf which associates to $y$ the cohomology of the complex
\[ \begin{matrix} \Gamma \Big((V \times _{y, \mathcal{Y}} \mathcal{X})', (\text{pr}')^{-1}\mathcal{I}^{i - 1}\Big)
\\ \downarrow
\\ \Gamma \Big((V \times _{y, \mathcal{Y}} \mathcal{X})', (\text{pr}')^{-1}\mathcal{I}^ i\Big)
\\ \downarrow
\\ \Gamma \Big((V \times _{y, \mathcal{Y}} \mathcal{X})', (\text{pr}')^{-1}\mathcal{I}^{i + 1}\Big)
\end{matrix} \]
Since $(\text{pr}')^{-1}$ is exact and preserves injectives the complex $(\text{pr}')^{-1}\mathcal{I}^\bullet $ is an injective resolution of $(\text{pr}')^{-1}\mathcal{H}$ and the proof is complete.
$\square$
Comments (0)