If $f$ is flat, $\mathcal{F}, \mathcal{G} \in \mathop{\mathrm{Ob}}\nolimits (\mathit{QCoh}(\mathcal{O}_\mathcal {X}))$, and $\mathcal{F}$ of finite presentation and let then we have
\[ d(hom(\mathcal{F}, \mathcal{G})) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(d(\mathcal{F}), d(\mathcal{G})) \]with notation as in Lemma 103.10.8. Perhaps the easiest way to see this is as follows
\begin{align*} d(hom(\mathcal{F}, \mathcal{G})) & = d(Q(\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G}))) \\ & = c(\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G})) \\ & = f^*\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G})|_{U_{\acute{e}tale}} \\ & = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {U}}(f^*\mathcal{F}, f^*\mathcal{G})|_{U_{\acute{e}tale}} \\ & = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(f^*\mathcal{F}|_{U_{\acute{e}tale}}, f^*\mathcal{G}|_{U_{\acute{e}tale}}) \end{align*}The first equality by construction of $hom$. The second equality by (7). The third equality by definition of $c$. The fourth equality by Modules on Sites, Lemma 18.31.4. The final equality by the same reference applied to the flat morphism of ringed topoi $i_ U (U_{\acute{e}tale}, \mathcal{O}_ U) \to (\mathcal{U}_{\acute{e}tale}, \mathcal{O}_\mathcal {U})$ of Sheaves on Stacks, Lemma 96.10.1.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)