The Stacks project

Lemma 103.8.3. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks which is quasi-compact, quasi-separated, and representable by algebraic spaces. Let $\mathcal{F}$ be in $\textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X})$. Then for an object $y : V \to \mathcal{Y}$ of $\mathcal{Y}$ we have

\[ (R^ if_*\mathcal{F})|_{V_{\acute{e}tale}} = R^ if'_{small, *}(\mathcal{F}|_{U_{\acute{e}tale}}) \]

where $f' : U = V \times _\mathcal {Y} \mathcal{X} \to V$ is the base change of $f$.

Proof. By Sheaves on Stacks, Lemma 96.21.3 we can reduce to the case where $\mathcal{X}$ is represented by $U$ and $\mathcal{Y}$ is represented by $V$. Of course this also uses that the pullback of $\mathcal{F}$ to $U$ is in $\textit{LQCoh}^{fbc}(\mathcal{O}_ U)$ by Proposition 103.8.1. Then the result follows from Sheaves on Stacks, Lemma 96.22.2 and the fact that $R^ if_*$ may be computed in the étale topology by Proposition 103.8.1. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GQH. Beware of the difference between the letter 'O' and the digit '0'.