The Stacks project

Remark 91.13.5. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathcal{B}, \mathcal{O}_\mathcal {B})$ and $\mathcal{G}$ be as in Lemma 91.13.4. Consider an extension $0 \to \mathcal{G} \to \mathcal{O}' \to \mathcal{O} \to 0$ as in the lemma. We can choose a sheaf of sets $\mathcal{E}$ and a commutative diagram

\[ \xymatrix{ \mathcal{E} \ar[d]_{\alpha '} \ar[rd]^\alpha \\ \mathcal{O}' \ar[r] & \mathcal{O} } \]

such that $f^{-1}\mathcal{O}_\mathcal {B}[\mathcal{E}] \to \mathcal{O}$ is surjective with kernel $\mathcal{J}$. (For example you can take any sheaf of sets surjecting onto $\mathcal{O}'$.) Then

\[ \mathop{N\! L}\nolimits _{\mathcal{O}/\mathcal{O}_\mathcal {B}} \cong \mathop{N\! L}\nolimits (\alpha ) = \left( \mathcal{J}/\mathcal{J}^2 \longrightarrow \Omega _{f^{-1}\mathcal{O}_\mathcal {B}[\mathcal{E}]/ f^{-1}\mathcal{O}_\mathcal {B}} \otimes _{f^{-1}\mathcal{O}_\mathcal {B}[\mathcal{E}]} \mathcal{O}\right) \]

See Modules on Sites, Section 18.35 and in particular Lemma 18.35.2. Of course $\alpha '$ determines a map $f^{-1}\mathcal{O}_\mathcal {B}[\mathcal{E}] \to \mathcal{O}'$ which in turn determines a map

\[ \mathcal{J}/\mathcal{J}^2 \longrightarrow \mathcal{G} \]

which in turn determines the element of $\mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {O}(\mathop{N\! L}\nolimits (\alpha ), \mathcal{G}) = \mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {O}(\mathop{N\! L}\nolimits _{\mathcal{O}/\mathcal{O}_\mathcal {B}}, \mathcal{G})$ corresponding to $\mathcal{O}'$ by the bijection of the lemma.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GQ6. Beware of the difference between the letter 'O' and the digit '0'.