Lemma 56.2.2. Let $A$, $\mathcal{B}$, $F$ be as in Lemma 56.2.1. Assume $\mathcal{B}$ is additive and $F$ is additive. Then $F'$ is additive and commutes with arbitrary direct sums.
Proof. To show that $F'$ is additive it suffices to show that $F'(M) \oplus F'(M') \to F'(M \oplus M')$ is an isomorphism for any $A$-modules $M$, $M'$, see Homology, Lemma 12.7.1. Write $M = \mathop{\mathrm{colim}}\nolimits _ i M_ i$ and $M' = \mathop{\mathrm{colim}}\nolimits _ j M'_ j$ as filtered colimits of finitely presented $A$-modules $M_ i$. Then $F'(M) = \mathop{\mathrm{colim}}\nolimits _ i F(M_ i)$, $F'(M') = \mathop{\mathrm{colim}}\nolimits _ j F(M'_ j)$, and
as desired. To show that $F'$ commutes with direct sums, assume we have $M = \bigoplus _{i \in I} M_ i$. Then $M = \mathop{\mathrm{colim}}\nolimits _{I' \subset I\text{ finite}} \bigoplus _{i \in I'} M_ i$ is a filtered colimit. We obtain
The second equality holds by the additivity of $F'$ already shown. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)