Lemma 15.60.3. Let $R \to A$ be a ring map. The functor $D(R) \to D(A)$, $E \mapsto E \otimes _ R^\mathbf {L} A$ of Lemma 15.60.1 is left adjoint to the restriction functor $D(A) \to D(R)$.
Proof. This follows from Derived Categories, Lemma 13.30.1 and the fact that $- \otimes _ R A$ and restriction are adjoint by Algebra, Lemma 10.14.3. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)