Lemma 63.10.4. Let $f : X \to Y$ be a finite type separated morphism of quasi-compact and quasi-separated schemes. Let $U$ and $V$ be quasi-compact opens of $X$ such that $X = U \cup V$. Denote $a : U \to Y$, $b : V \to Y$ and $c : U \cap V \to Y$ the restrictions of $f$. Let $\Lambda $ be a ring. For $K$ in $D^+_{tors}(X_{\acute{e}tale}, \Lambda )$ or $K \in D(X_{\acute{e}tale}, \Lambda )$ if $\Lambda $ is torsion, we have a distinguished triangle
in $D(Y_{\acute{e}tale}, \Lambda )$.
Comments (0)