Lemma 63.12.3. Let $X$ be a separated scheme of finite type over a field $k$. If $\mathcal{F}$ is a torsion abelian sheaf, then the abelian group $H^0_ c(X, \mathcal{F})$ defined in Definition 63.3.7 agrees with the abelian group $H^0_ c(X, \mathcal{F})$ defined in Definition 63.12.1.
Proof. Choose a compactification $j : X \to \overline{X}$ over $k$. In both cases the group is defined as $H^0(\overline{X}, j_!\mathcal{F})$. This is true for the first version by Lemma 63.3.10 and for the second version by construction. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)