Lemma 59.86.4. Let $I$, $X_ i$, $Y_ i$, $S_ i$, $T_ i$, $f_ i$, $h_ i$, $e_ i$, $g_ i$, $X$, $Y$, $S$, $T$, $f$, $h$, $e$, $g$ be as in the statement of Lemma 59.86.3. Let $0 \in I$ and let $K_0 \in D^+(T_{0, {\acute{e}tale}})$. For $i \in I$, $i \geq 0$ denote $K_ i$ the pullback of $K_0$ to $T_ i$. Denote $K$ the pullback of $K_0$ to $T$. If $f_ i^{-1}Rg_{i, *}K_ i = Rh_{i, *}e_ i^{-1}K_ i$ for all $i \geq 0$, then $f^{-1}Rg_*K = Rh_*e^{-1}K$.
Proof. It suffices to show that the base change map $f^{-1}Rg_*K \to Rh_*e^{-1}K$ induces an isomorphism on cohomology sheaves. In other words, we have to show that $f^{-1}R^ pg_*K \to R^ ph_*e^{-1}K$ is an isomorphism for all $p \in \mathbf{Z}$ if we are given that $f_ i^{-1}R^ pg_{i, *}K_ i \to R^ ph_{i, *}e_ i^{-1}K_ i$ is an isomorphism for all $i \geq 0$ and $p \in \mathbf{Z}$. At this point we can argue exactly as in the proof of Lemma 59.86.3 replacing reference to Lemma 59.51.8 by a reference to Lemma 59.52.4. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)