Lemma 59.84.5. Let $\Lambda $ be a Noetherian ring, let $k$ be an algebraically closed field, let $X$ be a separated finite type scheme over $k$ of dimension $\leq 1$, and let $0 \to \mathcal{F}_1 \to \mathcal{F} \to \mathcal{F}_2 \to 0$ be a short exact sequence of sheaves of $\Lambda $-modules on $X_{\acute{e}tale}$. If $H^ q_{\acute{e}tale}(X, \mathcal{F}_ i)$, $i = 1, 2$ are finite $\Lambda $-modules then $H^ q_{\acute{e}tale}(X, \mathcal{F})$ is a finite $\Lambda $-module.
Proof. Immediate from the long exact sequence of cohomology. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)