The Stacks project

Lemma 59.75.4. Let $g : S' \to S$ be a morphism of schemes. Let $\mathcal{F}$ be a sheaf on $S_{\acute{e}tale}$. Let $\overline{s}'$ be a geometric point of $S'$, and let $\overline{t}'$ be a geometric point of $\mathop{\mathrm{Spec}}(\mathcal{O}^{sh}_{S', \overline{s}'})$. Denote $\overline{s} = g(\overline{s}')$ and $\overline{t} = h(\overline{t}')$ where $h : \mathop{\mathrm{Spec}}(\mathcal{O}^{sh}_{S', \overline{s}'}) \to \mathop{\mathrm{Spec}}(\mathcal{O}^{sh}_{S, \overline{s}})$ is the canonical morphism. For any sheaf $\mathcal{F}$ on $S_{\acute{e}tale}$ the specialization map

\[ sp : (f^{-1}\mathcal{F})_{\overline{s}'} \longrightarrow (f^{-1}\mathcal{F})_{\overline{t}'} \]

is equal to the specialization map $sp : \mathcal{F}_{\overline{s}} \to \mathcal{F}_{\overline{t}}$ via the identifications $(f^{-1}\mathcal{F})_{\overline{s}'} = \mathcal{F}_{\overline{s}}$ and $(f^{-1}\mathcal{F})_{\overline{t}'} = \mathcal{F}_{\overline{t}}$ of Lemma 59.36.2.

Proof. Omitted. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 59.75: Specializations and étale sheaves

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GJ6. Beware of the difference between the letter 'O' and the digit '0'.