The Stacks project

Lemma 88.6.1. Let $I$ be an ideal of a Noetherian ring $A$. Let $r \geq 0$ and write $P = A[x_1, \ldots , x_ r]$ the $I$-adic completion. Consider a resolution

\[ P^{\oplus t} \xrightarrow {K} P^{\oplus m} \xrightarrow {g_1, \ldots , g_ m} P \to B \to 0 \]

of a quotient of $P$. Assume $B$ is rig-smooth over $(A, I)$. Then there exists an integer $n$ such that for any complex

\[ P^{\oplus t} \xrightarrow {K'} P^{\oplus m} \xrightarrow {g'_1, \ldots , g'_ m} P \]

with $g_ i - g'_ i \in I^ nP$ and $K - K' \in I^ n\text{Mat}(m \times t, P)$ there exists an isomorphism $B \to B'$ of $A$-algebras where $B' = P/(g'_1, \ldots , g'_ m)$.

Proof. (A) By Definition 88.4.1 we can choose a $c \geq 0$ such that $I^ c$ annihilates $\mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}^\wedge , N)$ for all $B$-modules $N$.

(B) By More on Algebra, Lemmas 15.4.1 and 15.4.2 there exists a constant $c_1 = c(g_1, \ldots , g_ m, K)$ such that for $n \geq c_1 + 1$ the complex

\[ P^{\oplus t} \xrightarrow {K'} P^{\oplus m} \xrightarrow {g'_1, \ldots , g'_ m} P \to B' \to 0 \]

is exact and $\text{Gr}_ I(B) \cong \text{Gr}_ I(B')$.

(C) Let $d_0 = d(\text{Gr}_ I(B))$ and $q_0 = q(\text{Gr}_ I(B))$ be the integers found in Local Cohomology, Section 51.22.

We claim that $n = \max (c_1 + 1, q_0 + (d_0 + 1)c, 2(d_0 + 1)c + 1)$ works where $c$ is as in (A), $c_1$ is as in (B), and $q_0, d_0$ are as in (C).

Let $g'_1, \ldots , g'_ m$ and $K'$ be as in the lemma. Since $g_ i = g'_ i \in I^ nP$ we obtain a canonical $A$-algebra homomorphism

\[ \psi _ n : B \longrightarrow B'/I^ nB' \]

which induces an isomorphism $B/I^ nB \to B'/I^ nB'$. Since $\text{Gr}_ I(B) \cong \text{Gr}_ I(B')$ we have $d_0 = d(\text{Gr}_ I(B'))$ and $q_0 = q(\text{Gr}_ I(B'))$ and since $n \geq \max (q_0 + (1 + d_0)c, 2(d_0 + 1)c + 1)$ we may apply Lemma 88.5.3 to find an $A$-algebra homomorphism

\[ \varphi : B \longrightarrow B' \]

such that $\varphi \bmod I^{n - (d_0 + 1)c}B' = \psi _ n \bmod I^{n - (d_0 + 1)c}B'$. Since $n - (d_0 + 1)c > 0$ we see that $\varphi $ is an $A$-algebra homomorphism which modulo $I$ induces the isomorphism $B/IB \to B'/IB'$ we found above. The rest of the proof shows that these facts force $\varphi $ to be an isomorphism; we suggest the reader find their own proof of this.

Namely, it follows that $\varphi $ is surjective for example by applying Algebra, Lemma 10.96.1 part (1) using the fact that $B$ and $B'$ are complete. Thus $\varphi $ induces a surjection $\text{Gr}_ I(B) \to \text{Gr}_ I(B')$ which has to be an isomorphism because the source and target are isomorphic Noetherian rings, see Algebra, Lemma 10.31.10 (of course you can show $\varphi $ induces the isomorphism we found above but that would need a tiny argument). Thus $\varphi $ induces injective maps $I^ eB/I^{e + 1}B \to I^ eB'/I^{e + 1}B'$ for all $e \geq 0$. This implies $\varphi $ is injective since for any $b \in B$ there exists an $e \geq 0$ such that $b \in I^ eB$, $b \not\in I^{e + 1}B$ by Krull's intersection theorem (Algebra, Lemma 10.51.4). This finishes the proof. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GAR. Beware of the difference between the letter 'O' and the digit '0'.