The Stacks project

Lemma 88.3.4. Let $(A_1, I_1) \to (A_2, I_2)$ be as in Remark 88.2.3 with $A_1$ and $A_2$ Noetherian. Let $B_1$ be in (88.2.0.2) for $(A_1, I_1)$. Let $B_2$ be the base change of $B_1$. Then there is a canonical map

\[ \mathop{N\! L}\nolimits _{B_1/A_1} \otimes _{B_2} B_1 \to \mathop{N\! L}\nolimits _{B_2/A_2} \]

which induces and isomorphism on $H^0$ and a surjection on $H^{-1}$.

Proof. Choose a presentation $B_1 = A_1[x_1, \ldots , x_ r]^\wedge /J_1$. Since $A_2/I_2^ n[x_1, \ldots , x_ r] = A_1/I_1^{cn}[x_1, \ldots , x_ r] \otimes _{A_1/I_1^{cn}} A_2/I_2^ n$ we have

\[ A_2[x_1, \ldots , x_ r]^\wedge = (A_1[x_1, \ldots , x_ r]^\wedge \otimes _{A_1} A_2)^\wedge \]

where we use $I_2$-adic completion on both sides (but of course $I_1$-adic completion for $A_1[x_1, \ldots , x_ r]^\wedge $). Set $J_2 = J_1 A_2[x_1, \ldots , x_ r]^\wedge $. Arguing similarly we get the presentation

\begin{align*} B_2 & = (B_1 \otimes _{A_1} A_2)^\wedge \\ & = \mathop{\mathrm{lim}}\nolimits \frac{A_1/I_1^{cn}[x_1, \ldots , x_ r]}{J_1(A_1/I_1^{cn}[x_1, \ldots , x_ r])} \otimes _{A_1/I_1^{cn}} A_2/I_2^ n \\ & = \mathop{\mathrm{lim}}\nolimits \frac{A_2/I_2^ n[x_1, \ldots , x_ r]}{J_2(A_2/I_2^ n[x_1, \ldots , x_ r])} \\ & = A_2[x_1, \ldots , x_ r]^\wedge /J_2 \end{align*}

for $B_2$ over $A_2$. As a consequence obtain a commutative diagram

\[ \xymatrix{ \mathop{N\! L}\nolimits ^\wedge _{B_1/A_1} : \ar[d] & J_1/J_1^2 \ar[r]_-{\text{d}} \ar[d] & \bigoplus B_1\text{d}x_ i \ar[d] \\ \mathop{N\! L}\nolimits ^\wedge _{B_2/A_2} : & J_2/J_2^2 \ar[r]^-{\text{d}} & \bigoplus B_2\text{d}x_ i } \]

The induced arrow $J_1/J_1^2 \otimes _{B_1} B_2 \to J_2/J_2^2$ is surjective because $J_2$ is generated by the image of $J_1$. This determines the arrow displayed in the lemma. We omit the proof that this arrow is well defined up to homotopy (i.e., independent of the choice of the presentations up to homotopy). The statement about the induced map on cohomology modules follows easily from the discussion (details omitted). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GAG. Beware of the difference between the letter 'O' and the digit '0'.