The Stacks project

Lemma 51.22.6. With $q_0 = q(S)$ and $d = d(S)$ as above, let $M$ be an $(A, n, c)$-module and let $\varphi : M \to I^ n/I^{2n}$ be an $A$-linear map. Assume $n \geq \max (q_0 + (1 + d)c, (2 + d)c)$ and if $d = 0$ assume $n \geq q_0 + 2c$. Then the composition

\[ M \xrightarrow {\varphi } I^ n/I^{2n} \to I^{n - (1 + d)c}/I^{2n - (1 + d)c} \]

is of the form $\sum a_ i \psi _ i$ with $a_ i \in I^ c$ and $\psi _ i : M \to I^{n - (2 + d)c}/I^{2n - (2 + d)c}$.

Proof. The case $d > 1$. Since we have a compatible system of maps $p^*(I^ q) \to \mathcal{O}_ X(q)$ for $q \geq 0$ there are canonical maps $p^*(I^ q/I^{q + \nu }) \to \mathcal{O}_{Y_\nu }(q)$ for $\nu \geq 0$. Using this and pulling back $\varphi $ we obtain a map

\[ \chi : p^*M \longrightarrow \mathcal{O}_{Y_ n}(n) \]

such that the composition $M \to H^0(X, p^*M) \to H^0(X, \mathcal{O}_{Y_ n}(n))$ is the given homomorphism $\varphi $ combined with the map $I^ n/I^{2n} \to H^0(X, \mathcal{O}_{Y_ n}(n))$. Since $\mathcal{O}_{Y_ n}(n)$ is invertible on $Y_ n$ the linear map $\chi $ determines a section

\[ \sigma \in \Gamma (X, (p^*M)^\vee (n)) \]

with notation as in Remark 51.22.5. The discussion in Remark 51.22.5 shows the cokernel and kernel of $can : p^*(M^\vee ) \to (p^*M)^\vee $ are scheme theoretically supported on $Y_ c$. By Lemma 51.22.3 the map $(p^*M)^\vee (n) \to (p^*M)^\vee (n - 2c)$ factors through $p^*(M^\vee )(n - 2c)$; small detail omitted. Hence the image of $\sigma $ in $\Gamma (X, (p^*M)^\vee (n - 2c))$ comes from an element

\[ \sigma ' \in \Gamma (X, p^*(M^\vee )(n - 2c)) \]

By Lemma 51.22.4 part (5), the fact that $M^\vee $ is an $(A, n, c)$-module by More on Algebra, Lemma 15.70.7, and the fact that $n \geq q_0 + (1 + d)c$ so $n - 2c \geq q_0 + (d - 1)c$ we see that the image of $\sigma '$ in $H^0(X, p^*M^\vee (n - (1 + d)c))$ is the image of an element $\tau $ in $I^{n - (1 + d)c}M^\vee $. Write $\tau = \sum a_ i \tau _ i$ with $\tau _ i \in I^{n - (2 + d)c}M^\vee $; this makes sense as $n - (2 + d)c \geq 0$. Then $\tau _ i$ determines a homomorphism of modules $\psi _ i : M \to I^{n - (2 + d)c}/I^{2n - (2 + d)c}$ using the evaluation map $M \otimes M^\vee \to A/I^ n$.

Let us prove that this works1. Pick $z \in M$ and let us show that $\varphi (z)$ and $\sum a_ i \psi _ i(z)$ have the same image in $I^{n - (1 + d)c}/I^{2n - (1 + d)c}$. First, the element $z$ determines a map $p^*z : \mathcal{O}_{Y_ n} \to p^*M$ whose composition with $\chi $ is equal to the map $\mathcal{O}_{Y_ n} \to \mathcal{O}_{Y_ n}(n)$ corresponding to $\varphi (z)$ via the map $I^ n/I^{2n} \to \Gamma (\mathcal{O}_{Y_ n}(n))$. Next $z$ and $p^*z$ determine evaluation maps $e_ z : M^\vee \to A/I^ n$ and $e_{p^*z} : (p^*M)^\vee \to \mathcal{O}_{Y_ n}$. Since $\chi (p^*z)$ is the section corresponding to $\varphi (z)$ we see that $e_{p^*z}(\sigma )$ is the section corresponding to $\varphi (z)$. Here and below we abuse notation: for a map $a : \mathcal{F} \to \mathcal{G}$ of modules on $X$ we also denote $a : \mathcal{F}(t) \to \mathcal{F}(t)$ the corresponding map of twisted modules. The diagram

\[ \xymatrix{ p^*(M^\vee ) \ar[d]_{can} \ar[r]_{p^*e_ z} & \mathcal{O}_{Y_ n} \ar@{=}[d] \\ (p^*M)^\vee \ar[r]^{e_{p^*z}} & \mathcal{O}_{Y_ n} } \]

commutes by functoriality of the construction $can$. Hence $(p^*e_ z)(\sigma ')$ in $\Gamma (Y_ n, \mathcal{O}_{Y_ n}(n - 2c))$ is the section corresponding to the image of $\varphi (z)$ in $I^{n - 2c}/I^{2n - 2c}$. The next step is that $\sigma '$ maps to the image of $\sum a_ i \tau _ i$ in $H^0(X, p^*M^\vee (n - (1 + d)c))$. This implies that $(p^*e_ z)(\sum a_ i \tau _ i) = \sum a_ i p^*e_ z(\tau _ i)$ in $\Gamma (Y_ n, \mathcal{O}_{Y_ n}(n - (1 + d)c))$ is the section corresponding to the image of $\varphi (z)$ in $I^{n - (1 + d)c}/I^{2n - (1 + d)c}$. Recall that $\psi _ i$ is defined from $\tau _ i$ using an evaluation map. Hence if we denote

\[ \chi _ i : p^*M \longrightarrow \mathcal{O}_{Y_ n}(n - (2 + d)c) \]

the map we get from $\psi _ i$, then we see by the same reasoning as above that the section corresponding to $\psi _ i(z)$ is $\chi _ i(p^*z) = e_{p^*z}(\chi _ i) = p^*e_ z(\tau _ i)$. Hence we conclude that the image of $\varphi (z)$ in $\Gamma (Y_ n, \mathcal{O}_{Y_ n}(n - (1 + d)c))$ is equal to the image of $\sum a_ i\psi _ i(z)$. Since $n - (1 + d)c \geq q_0$ we have $\Gamma (Y_ n, \mathcal{O}_{Y_ n}(n - (1 + d)c)) = I^{n - (1 + d)c}/I^{2n - (1 + d)c}$ by Lemma 51.22.1 and we conclude the desired compatibility is true.

The case $d = 1$. Here we argue as above that we get

\[ \chi : p^*M \longrightarrow \mathcal{O}_{Y_ n}(n),\quad \sigma \in \Gamma (X, (p^*M)^\vee (n)),\quad \sigma ' \in \Gamma (X, p^*(M^\vee )(n - 2c)), \]

and then we use Lemma 51.22.4 part (4) to see that $\sigma '$ is the image of some element $\tau \in I^{n - 2c}M^\vee $. The rest of the argument is the same.

The case $d = 0$. Argument is exactly the same as in the case $d = 1$. $\square$

[1] We hope some reader will suggest a less dirty proof of this fact.

Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GAC. Beware of the difference between the letter 'O' and the digit '0'.