Lemma 36.5.1. Let $f : X \to S$ be an affine morphism of schemes. Let $\mathcal{F}^\bullet $ be a complex of quasi-coherent $\mathcal{O}_ X$-modules. Then $f_*\mathcal{F}^\bullet = Rf_*\mathcal{F}^\bullet $.
Proof. Combine Lemma 36.4.2 with Cohomology of Schemes, Lemma 30.2.3. An alternative proof is to work affine locally on $S$ and use Lemma 36.3.7. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)