Lemma 36.4.4. Let $X$ be a quasi-separated and quasi-compact scheme. For any object $K$ of $D_\mathit{QCoh}(\mathcal{O}_ X)$ the spectral sequence
of Cohomology, Example 20.29.3 is bounded and converges.
Lemma 36.4.4. Let $X$ be a quasi-separated and quasi-compact scheme. For any object $K$ of $D_\mathit{QCoh}(\mathcal{O}_ X)$ the spectral sequence
of Cohomology, Example 20.29.3 is bounded and converges.
Proof. By the construction of the spectral sequence via Cohomology, Lemma 20.29.1 using the filtration given by $\tau _{\leq -p}K$, we see that suffices to show that given $n \in \mathbf{Z}$ we have
and
The first follows from Lemma 36.3.4 applied with $F = \Gamma (X, -)$ and the bound in Cohomology of Schemes, Lemma 30.4.5. The second holds whenever $-p \leq n$ for any ringed space $(X, \mathcal{O}_ X)$ and any $K \in D(\mathcal{O}_ X)$. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)