Lemma 15.84.7. Let $I$ be an ideal of a ring $R$. Let $K$ be an object of $D(R)$ with $H^ i(K) = 0$ for $i \not\in \{ -1, 0\} $. Let $R \to R'$ be a ring map. If $K$ satisfies the equivalent conditions (1), (2), and (3) of Lemma 15.84.5 with respect to $(R, I)$, then $\tau _{\geq -1}(K \otimes _ R^\mathbf {L} R')$ satisfies the equivalent conditions (1), (2), and (3) of Lemma 15.84.5 with respect to $(R', IR')$
Proof. We may assume $K$ is represented by a two term complex $K^{-1} \to K^0$ with $K^0$ free such that for any $a \in I$ the map $a : K^{-1} \to K^{-1}$ is equal to $h_ a \circ d_ K^{-1}$ for some map $h_ a : K^0 \to K^{-1}$. By Lemma 15.84.6 we see that $\tau _{\geq -1}(K \otimes _ R^\mathbf {L} R')$ is represented by $K^\bullet \otimes _ R R'$. Then of course for every $a \in I$ we see that $a \otimes 1 : K^{-1} \otimes _ R R' \to K^{-1} \otimes _ R R'$ is equal to $(h_ a \otimes 1) \circ (d_ K^{-1} \otimes 1)$. Since the collection of maps $K^{-1} \otimes _ R R' \to K^{-1} \otimes _ R R'$ which factor through $\text{d}_ K^{-1} \otimes 1$ forms an $R'$-module we conclude. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)