The Stacks project

Lemma 14.33.5. Let $\mathcal{A}$, $\mathcal{B}$, $\mathcal{C}$, $Y$, $d$, $s$, $F$, $G$ be as in Example 14.33.3. Let $F' : \mathcal{A} \to \mathcal{C}$ and $G' : \mathcal{C} \to \mathcal{B}$ be two functors. Let $(a_ n) : G \circ X \to G' \circ X$ be a morphism of simplicial objects compatible via augmentations with $a : G \to G'$. Let $(b_ n) : X \circ F \to X \circ F'$ be a morphism of simplicial objects compatible via augmentations with $b : F \to F'$. Then the two maps

\[ a \star (b_ n), (a_ n) \star b : G \circ X \circ F \to G' \circ X \circ F' \]

are homotopic.

Proof. To show the morphisms are homotopic we construct morphisms

\[ h_{n, i} : G \circ X_ n \circ F \to G' \circ X_ n \circ F' \]

for $n \geq 0$ and $0 \leq i \leq n + 1$ satisfying the relations described in Lemma 14.26.2. See also Remark 14.26.4. To satisfy condition (1) of Lemma 14.26.2 we are forced to set $h_{n, 0} = a \star b_ n$ and $h_{n , n + 1} = a_ n \star b$. Thus a logical choice is

\[ h_{n , i} = a_{i - 1} \star b_{n - i} \]

for $1 \leq i \leq n$. Setting $a = a_{-1}$ and $b = b_{-1}$ we see the displayed formular holds for $0 \leq i \leq n + 1$.

Recall that

\[ d^ n_ j = 1_ G \star 1_ j \star d \star 1_{n - j} \star 1_ F \]

on $G \circ X \circ F$ where we use the notation $1_ a = 1_{Y \circ \ldots \circ Y}$ introduced in the proof of Lemma 14.33.2. We are going to use below that we can rewrite this as

\begin{align*} d^ n_ j & = d^ j_ j \star 1_{n - j} = d^{j + 1}_ j \star 1_{n - j} = \ldots = d^{n - 1}_ j \star 1_1 \\ & = 1_ j \star d^{n - j}_0 = 1_{j - 1} \star d^{n - j + 1}_1 = \ldots = 1_1 \star d^{n - 1}_{j - 1} \end{align*}

Of course we have the analogous formulae for $d^ n_ j$ on $G' \circ X \circ F'$.

We check condition (2) of Lemma 14.26.2. Let $i > j$. We have to show

\[ d^ n_ j \circ (a_{i - 1} \star b_{n - i}) = (a_{i - 2} \star b_{n - i}) \circ d^ n_ j \]

Since $i - 1 \geq j$ we can use one of the possible descriptions of $d^ n_ j$ to rewrite the left hand side as

\[ (d^{i - 1}_ j \star 1_{n - i + 1}) \circ (a_{i - 1} \star b_{n - i}) = (d^{i - 1}_ j \circ a_{i - 1}) \star b_{n - i} = (a_{i - 2} \circ d^{i - 1}_ j) \star b_{n - i} \]

Similarly the right hand side becomes

\[ (a_{i - 2} \star b_{n - i}) \circ (d^{i - 1}_ j \star 1_{n - i + 1}) = (a_{i - 2} \circ d^{i - 1}_ j) \star b_{n - i} \]

Thus we obtain the same result and (2) is checked.

We check condition (3) of Lemma 14.26.2. Let $i \leq j$. We have to show

\[ d^ n_ j \circ (a_{i - 1} \star b_{n - i}) = (a_{i - 1} \star b_{n - 1 - i}) \circ d^ n_ j \]

Since $j \geq i$ we may rewrite the left hand side as

\[ (1_ i \star d^{n - i}_{j - i}) \circ (a_{i - 1} \star b_{n - i}) = a_{i - 1} \star (b_{n - 1 - i} \circ d^{n - i}_{j - i}) \]

A similar manipulation shows this agrees with the right hand side.

Recall that

\[ s^ n_ j = 1_ G \star 1_ j \star s \star 1_{n - j} \star 1_ F \]

on $G \circ X \circ F$. We are going to use below that we can rewrite this as

\begin{align*} s^ n_ j & = s^ j_ j \star 1_{n - j} = s^{j + 1}_ j \star 1_{n - j - 1} = \ldots = s^{n - 1}_ j \star 1_1 \\ & = 1_ j \star s^{n - j}_0 = 1_{j - 1} \star s^{n - j + 1}_1 = \ldots = 1_1 \star s^{n - 1}_{j - 1} \end{align*}

Of course we have the analogous formulae for $s^ n_ j$ on $G' \circ X \circ F'$.

We check condition (4) of Lemma 14.26.2. Let $i > j$. We have to show

\[ s^ n_ j \circ (a_{i - 1} \star b_{n - i}) = (a_ i \star b_{n - i}) \circ s^ n_ j \]

Since $i - 1 \geq j$ we can rewrite the left hand side as

\[ (s^{i - 1}_ j \star 1_{n - i + 1}) \circ (a_{i - 1} \star b_{n - i}) = (s^{i - 1}_ j \circ a_{i - 1}) \star b_{n - i} = (a_ i \circ s^{i - 1}_ j) \star b_{n - i} \]

Similarly the right hand side becomes

\[ (a_ i \star b_{n - i}) \circ (s^{i - 1}_ j \star 1_{n - i + 1}) = (a_ i \circ s^{i - 1}_ j) \star b_{n - i} \]

as desired.

We check condition (5) of Lemma 14.26.2. Let $i \leq j$. We have to show

\[ s^ n_ j \circ (a_{i - 1} \star b_{n - i}) = (a_{i - 1} \star b_{n + 1 - i}) \circ s^ n_ j \]

This equality holds because both sides evaluate to $a_{i - 1} \star (s^{n - i}_{j - i} \circ b_{n - i}) = a_{i - 1} \star (b_{n + 1 - i} \circ s^{n - i}_{j - i})$ by exactly the same arguments as above. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G5R. Beware of the difference between the letter 'O' and the digit '0'.